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Abstract— This paper considers a formal object-oriented model and encapsulation of object orientation, leading to a very low-
for distributed computing. Object orientation appears as a |evel style of programming. Models of distributed systems
leading framework for concurrent and distributed systems. paseq on asynchronously communicating concurrent objects
However, the synchronization of the RPC communication model . . .
is unsatisfactory in many distributed systems. Asynchronous seem much more natural. T_h's paper considers pfogramm'”g
message passing gives better control and efficiency in this setting,constructs for concurrent objects, based on communication by
but lacks the structure and discipline of traditional object- asynchronous method cakisd a notion ofprocessor release
oriented methods. The integration of the message concept in the points Processor release points are used to influence the
object-oriented paradigm is unsettled, especially with respect to jmnicit internal control flow in concurrent objects. Objects

inheritance and redefinition. h iated d hanism f heduli
We propose an approach combining asynchronous method ave an assoclated processor and a mechanism for scheduling

calls and conditional processor release points, which reduces Of pending processes. This reduces time spent waiting for
the cost of waiting for replies in the distributed environment replies to method calls in a distributed environment and allows
while avoiding low-level synchronization constructs such as gbjects to dynamically change between active and reactive
explicit signaling. Even the lack of replies to method calls in papayior (client and server). These notions were formalized

unstable environments need not lead to deadlock in the invoking ith th fi | i f the Creol | 3
objects. This property seems attractive in asynchronous, open, V! e operational semantics of the Creol language [3].

or unreliable environments. Furthermore, the approach allows  This paper considers how these notions may be integrated
active and passive behavior (client and server) to be combined with the structuring mechanism provided by inheritance, ad-
in concurrent objects in a very natural way. dressing high-level program constructs relevant to the integ-

In this paper, we consider the integration of these Constructs ration of object orientation and distribution. In contrast to
with a mechanism for multiple inheritance within a small - .
object-oriented language. The language constructs are formally relat_ed v_vork, W€ propose an |nt_egrat|on of asynchronous com-
described by an operational semantics defined in rewriting logic. Munication and inheritance which allows method overloading
and redefinition. To illustrate the generality of the approach,
multiple inheritance is considered. To explain the approach and
motivate its suitability, the proposed language constructs for

The importance of inter-process communication is rapidbjistributed object systems are integrated in the object-oriented
increasing with the development of distributed computingreol language with a simple operational semantics, while
both over the Internet and over local networks. Object onnaintaining the efficiency control of asynchronous message
entation appears as a leading framework for concurrent guaksing. The operational semantics of the language extension
distributed systems, and has been recommended by the R#/defined in rewriting logic [4], extending Creol’s operational
ODP [1], but object interaction by means of method callsemantics which is executable as a language interpreter in the
is usually synchronous. The mechanism of remote procedtwel Maude [5]. Our experiments suggest that rewriting logic
calls (RPC) [2] has been derived from the setting of sequentéald Maude provide a well-suited platform for experimentation
systems, and works well for tightly coupled systems. It iwith language constructs and concurrent environments.
clearly less suitable in a distributed setting where the compon-Paper overview:Sect. Il outlines the overall setting of the
ents are loosely coupled. Here synchronous communicatepproach. Sect. 11l extends the Creol language with inherit-
gives rise to undesired and uncontrolled waiting, and possitapce. Sect. IV gives some examples. Sect. V gives a formal,
deadlock. Asynchronous message passing gives better comperational semantics for the language. Sect. VI considers
and efficiency, but does not provide the structure and disciplirgated work and Sect. VII concludes the paper.
inherent in method declarations and calls.

Intuitive high-level programming constructs are needed to
unite object orientation and distribution in a natural way. We
do not believe that distribution should be transparent to tfe Asynchronous method calls
programmer as in the RPC model, rather communication inAccording to the RM-ODP, distributed components may be
the distributed setting should explicitly asynchronousSep- seen as (collections of) objects that run in parallel and com-
arating execution threads from objects breaks the modulanitynicate by means of remote method calls. However, existing

I. INTRODUCTION

II. AN APPROACH TOOBJECTORIENTED
DISTRIBUTED SYSTEMS
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interaction models do not combine the method concept wiffs a subclass is a specialization of a superclass, an object of
distributed concurrent objects in a satisfactory manner. Ttiee subclass may replace an object of the superclass. This
three basic interaction models for concurrent processes f@s led to an active field of research on behavioral subtyping
are shared variables, RPC, and message passing. As sh|ll [15], which aims at identifying conditions for safe
memory models do not generalize well to distributed envirosubstitutability. Although many languages identify the subclass
ments, shared variables are discarded. With the RPC modaeld subtype relations, in particular with regard to parameter
an object is activated by a method call. Control is transferr@assing, several authors argue that inheritance relations for
with the call so there is a master-slave relationship betweewsde and for behavior should be kept distinct. Identifying the
the caller and the callee. A similar approach is taken witivo relations leads to severe restrictions on code reuse which
the execution threads of e.g. Hybrid [6] and Java [7], amday seem unattractive to programmers [16].
concurrency is achieved through multithreading. The interfer-In order to solve the conflict between unrestricted code
ence problem for shared variables reemerges when threegisse in subclasses, and behavioral subtyping and incremental
operate concurrently in the same object, which happens witasoning control [15], [16], we use behavioral interfaces [17],
non-serialized methods in Java. Reasoning about programg$1i8] to type object variables and remote calls, and allow mul-
this setting is a highly complex matter [8], [9]: Safety is byiple inheritance at both the interface and class level. Interface
convention rather than by language design [10]. Verificatidnheritance is restricted to a form of behavioral subtyping [15],
considerations therefore suggest that all methods should vileereas class inheritance may be used freely. In this paper,
serialized as in e.g. Hybrid. Restricting to serialized methodaterfaces are given a purely syntactic presentation.
the invoking process mustait for the return of a call, blocking  Inherited class (re)declarations are resolved by disjoint
for any other activity in the object. In a distributed setting thisnion combined with an ordering of the super classes. A class
limitation is severe; delays and instability may cause muchay implement several interfaces, provided that it satisfies the
unnecessary waiting. A nonterminating method will also blockyntactic and semantic requirements stated in the interfaces.
evaluation of other method calls, which makes it difficult té\n object of clasg” supports an interfacg if the classC im-
combine active and passive behavior in the same object. plements/. Reasoning control is ensured by substitutability at
In contrast, message passing does not transfer conttbk level of interfacesan object supporting an interface | may
For synchronous message passing, as in Ada’s Rendezvbegeplaced by another object supporting | or a subinterface
mechanism, both sender and receiver must be ready befofd in a context depending o, although the latter object
communication can occur. Method calls may be modeled byay be of another class. Subclassing is unrestricted in the
pairs of messages, on which the two objects must synchronganse that implementation claims (as well as class invariants)
[2]. For distributed systems, this synchronization still results &re not in general inherited at the class level.
much waiting. In the asynchronous setting, messages may b#&\Vith distinct inheritance and subtyping hierarchies, it is
emitted even when the receiver is not ready. Communicatipossible to inherit only a subset of the attributes and methods
by asynchronous message passing is well-known from eof a superclass. However, this would require considerable work
the Actor model [11], [12]. Generative communication imstablishing invariants for parts of the superclass that appear
Linda [13] is an approach between shared variables addsirable for inheritance, either anticipating future needs or
asynchronous message passing, where messages withouwtsite designing subclasses. Tleacapsulation principldor
explicit destination address are shared on a possibly distributdgiss inheritance states that it should suffice to work at the
blackboard. However, method calls imply an ordering osubclass level to ensure that the subclass is well-behaved when
communication not easily captured in the Actor model andheriting from a superclass: Code design as well as new proof
Linda. We believe that a satisfactory notion of method caltsbligations should occur in the subclass only. Situations that
for the distributed setting should be asynchronous, combinibgeak the encapsulation principle have been labeled inheritance
the advantages of asynchronous message passing with ghemalies [19], [20], in which reuse requires redefinition.
structuring mechanism provided by the method concept. Reasoning considerations therefore suggest that all attributes
and methods of a superclass are inherited, but method redefin-
ition may violate the semantic requirements of an interface.
Inheritance in object-oriented languages basically serves _ )
two purposes. First, class inheritance is a powerful structlr: ASynchronous method calls and inheritance
ing mechanism for code reuse. Class extension and metho@istributed communication based on asynchronous message
redefinition are convenient both for development and undgrassing does not offer the structuring mechanisms provided by
standing of code. Calling superclass methods in a subclassthod definitions. Notions of asynchronous methods may be
method enables reuse in redefined methods, making the ieild on top of asynchronous communication paradigms such
lationship between the method versions explicit. Thus, thés Actors and Linda, fixing a method as either synchronous
facility is clearly superior to cut-and-paste programming witbhr asynchronous. However, formalisms taking this approach
regard to the ease with which existing code may be inspecteaive traditionally either not supported inheritance [21], [22],
and understood. Second, inheritance can be understoodniposed redefinition of asynchronous methods [23], or used
terms of reasoning reuse, obeying thistitutabilityprinciple: inheritance as a means to introduce nondeterminism in the lan-

B. Inheritance and structuring mechanisms



guage [5], [24]. Inheritance in the object-oriented sense has nuihimal environment that any object offering the interface
been supported by these formalisms. In particular, traditionaeds at the point of creation.
method redefinition and overriding have not been available.For active objects we may want to restrict invocation access
In this paper, we propose an approach which allows methadsobjects of a particular interface. This way, the active object
to be invoked in either a synchronous or an asynchronot@n invoke methods of the caller and not only passively
manner and which combines (asynchronous) methods caltamplete invocations of its own methods. Use of thigh
with inheritance, allowing redefinition as well as overriding.clause restricts the communication environment of an object,
as considered through the interface, to external objects offering
a given cointerface[17], [18]. For some objects no such
This section proposes programming constructs for distriknowledge is required, which is captured by the keywany
uted concurrent objects, based on asynchronous method cédisthe with clause. Mutual dependency is specified if two
processor release points, and multiple inheritance. Concurrgnérfaces have each other as cointerface.
objects are potentially active, encapsulating execution threadsExample. We consider the interfaces of a node in a
consequently, elements of basic data types are not considgsedr-to-peer file sharing network. @lient interface captures
objects. In this sense, our objects resemble top-level objegie client end of the node, available to any user of the system.
in e.g. Hybrid. Objects have identity: communication takes offers methods to list all files available in the network, and
place between named objects and object identifiers may tberequest the download of a given file from a given server.
exchanged. As motivated above, Creol objects are typgdServerinterface offers a method for obtaining a list of files
by interfaces, resembling CORBAs IDL, but extended witlavailable from the node, and a mechanism for downloading
semantic requirements and mechanisms for type controlgacks, i.e. parts of a target file. The Server interface is
dynamically reconfigurable systems. Strong typing implies thabailable to other servers in the network.G\ient2 interface
invoked methods are supported by the called object (when iionly available to Servers with a method to fetch a list of
null), and formal and actual parameters match. trusted servers from the client.

IIl. AN OVERVIEW OF CREOL

A. Interfaces and strong typing interface Client  interface Server interface Client2
Two kinds of variables are declared; an object variable typed Pe9in with Any  begin with Server begin with Server

. . . ilFil listFil tS
by an interface and an ordinary variable typed by a data type. gg ?gg,':“ées 88 glgi:tLleiZth en%p getservers
We assume a common typata of basic data values, such as  end op getPack
the natural numbensat, stringsStr, and object identifier®bj, end

including this, which may be passed as arguments to methogse with-construct allows the typing mechanism to deduce
ExpressionsExpr evaluate toData. Denote byvar the set of that any caller of a server request will understand/it&iles
program variables, byitd the set of method names, and byyng getpackmethods. To save space, discussion of method
Label the set of method call identifiers. Object variables alSarameters is postponed to Sect. IV. The two interfaces may
declared wittExpr values, which evaluate to data in the conteX{g inherited by a third interfacPeer describing nodes able

of the actual class parameters. In order to focus the discussigryct according to both the client role and the server role:
on asynchronous method calls, processor release points, and

inheritance in this setting, standard typing issues will not be  interface Peerinherits Client, Client2, Server
discussed in further detail in this paper. begin end

Strong typing ensures that for each method invocati
o.m(In; Oul), wherel is the declared interface of the actual
objecto (if not null) will support and the methodn will be At the imperative level, attributes (class variables) and
understood. As object variables are typed by interfaces, omhethod declarations are organized in classes, which may have
the methods mentioned in the interface (or its super-interfaceajue and object parameters similar to interface parameters.
are visible. Interfaces do not specify instance variables, ¥e consider multiple inheritance where all attributes and
these cannot be directly referenced. Explicit hiding of classethods of a superclass are inherited by the subclass, and
attributes and methods is not needed. Interfaces deschigere superclass methods may be redefined. Class inheritance
viewpoints to objects and have the following general form: is declared in Creol by a keywoidherits which takes as its

n _ . . .
%. Class Declarations with Multiple Inheritance

interface F ((parametery inherits F\, Fy, ..., Fin argument an'_nheritance list i.e. a list of class name§'(E)
begin with G whereE provides actual class parameters. Say that a method
op ma(...) is definedabovea classC if it is declared inC' or in at least
one of the classes inherited lay. When a method is invoked
end°p ma(...) in an objecto of classC, a method body is identified in the
inheritance graph and bound to the call. In order to keep the
where F, F1, ..., F,,, and G are interfaces. Interfaces mayexposition simple, the method call will be bound to the first

have both value and object parameters, typed respectivelygmssible method definition abo¢ein the inheritance graph, in
data types and interfaces. Interface parameters describe aHeft-first depth-first order, and we will here ignore the types



of the method parameters in the binding strategy. (In Cremhd E an expression list with the actual parameters supplied
typing considerations are made to ensure strong typing.) to the method. Labels identify replies, and may be omitted

The encapsulation provided by interfaces suggests tliag reply is not explicitly requested. As no synchronization
external calls to an object of clagsare virtually bound to the is involved, process execution can proceed after calling an
closest method definition above. However, the object may external method until the return value is actually needed by
internally invoke methods of its superclasses. In the settitige process. Return values from the call are explicitly fetched,
of multiple inheritance and overloading, methods defined insay in a variable lisv, by the command?(v). This command
superclass may be accessed in the subclass by qualified tefatsv as a future variable [21]: If a reply has arrived, return
erences. We let attributes of the superclass be accessed inviidaes are assigned te¢ and execution continues without
same way. Consequently, identically named attributes whidelay. Otherwise, process execution is blocked. In order to
are inherited from several superclasses are only identifiedaifoid blocking in the asynchronous case, processor release
they come from a common ancestor class. points are introduced for reply requests (Sect. 11I-C.2): If no

Objects are dynamically created instances of classes. Objesgily has arrived, execution sispended
attributes are encapsulated and can only be accessed via théhe syntaxc.m(E; V), where the semicolon separates input
object’s methods. Among the declared methods, we distinguiskpressions from output variables, is adopted for synchronous
the runmethod, which is given special treatment operationalfRPC) method calls, immediately blocking the processor while
After initialization, the run method, if provided, is started.waiting for the reply. The language does not support monitor
Methods may be invoked internally and by other objects o#entrance, mutual synchronous calls may therefore lead to
appropriate interfaces. When called from other objects, metteadlock. In order to execute local calls, the invoking process
ods reflect passive or reactive behavior in the object, whergagst eventually suspend its own execution. In particular,
run reflects active behavior. Methods need not terminate aexecution of synchronous local calls will precede the active
all method instances may be temporaslyspended code. Local calls need not be prefixed by an object identifier,
in which case they may be identified syntactically, otherwise
equality between caller and callee is determined at runtime.

1) Asynchronous Methods\n object offers methods to its  2) Inner Processor Release Point&Guarded commands
environment, specified through a number of interfaces apdare used to explicitly declare potential processor release
cointerfaces. All interaction with an object happens througivints await g. Guarded commands can be nested within
method calls. In the asynchronous setting method calls clae same local variable scope, corresponding to a series of
always be emitted, because the receiving object cannot blgcessor release points. When an inner guard which evaluates
communication.Method overtakingis allowed: if methods to false is encountered during process execution, the process is
offered by an object are invoked in one order, the object mayspended and the processor released. After processor release,
start the method instances in another order. A method insta@eg suspended process may be selected for execution.
is, roughly speaking, program code with inner processorThe typeGuard is constructed inductively:
release points, evaluated in the context of local variables. « wait € Guard (explicit release)

Different method executions may be interleaved, so the val-« t? € Guard, wheret € Label
ues of an object’s program variables are not entirely controlleds 5 € Guard, whereb is a boolean expression over
by a method instance with a release point. Therefore, a method local and object state
may have local variables supplementing the object variabless g; A g2 andg; V g2, whereg, g2 € Guard.
In particular, the values of formal parameters are stored locally,Use ofwait will explicitly release the processor. The reply
but other local variables may also be created. Semantically,qward? succeeds if the reply to the method invocation with
instantiated method is represented bpracess(s,L) where |abel ¢ has arrived. Evaluation of guards is done atomically.
S is a sequence of commands and Var — Data the local We let await g A t?(Vv) abbreviateawait g A 7;¢?(v) and
state. Consider an objeatwhich offers the method await p(E; V) abbreviatet!p(E); await ¢?(v) for some fresh

op m(in n : Nat out d : Data) == var i : Nat=0; S. label t.
to the environment. Syntactically, method declarations endinternal control flow in objects is expressed by composing
with a period. Accepting a call tan with argument2 from guarded commands. LéLS; andGS: be guarded commands
another object’ creates a process, {label — ¢, caller — await g;;S; and await go; So. Inner guards are obtained by
o,n — 2.d — nil,i — 0}) in the objecto. An object sequential composition; in the stateméi;; GS, the guard
may have several (suspended) instances of the same metheds a potential release point. Non-deterministic choice is ex-
possibly with different values for local variables. The locgbressed by=.S;0G.S,, which may compute, if g; evaluates
variableslabel and caller are reserved to identify the calltotrue or s, if go evaluates tarue. Non-deterministic merge is
and the caller for the reply, which is automatically emitted a@xpressed bz S, | GS2, defined agGS1; GS2)T(GS2; GSy).
method termination, i.e. when computationis completed. Synchronized merge=S; & GS,, is defined asawait g; A

An asynchronous method call is made with the commangd; S;; S5, treating non-guarded arguments as guarded by true
tlz.m(E), wheret € Label provides a locally unique referenceand expanding synchronized method calls (see Sect. IV-B).
to the call, z is an object expressionp a method name, Control flow without potential processor release ugeand

C. Methods Declarations
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interface DB

Syntactic categories. Definitions. begin with Server

g in Guard gu=wait|b[t?| g1 Agz2|g1Vge op getFilefn fld:Str out file: List[List[Data]])

p in MtdCall p == z.m| mQclassnamém op getLengthip fld:Str out lengthNat)

S in StmList Su=s|s;S op storeFile{n fld:Str, file:List{Data])

s in Stm s = skip | (s) op listFiles(out fList:List[Str])

t in Label | s 0s, | Sl|||52 | S1 &S end

v in Var | v :=E| v := new classnami) The methodgetFilereturns a list of packets, i.e. a sequence
e in Expr |if b then s, elses; fi of sequences of data, for network transmissigetLength

@ in ObjExpr | while b do s od returns the number of such packets for a given file name,
b in BoolExpr | 1p(E) | 1p(E) | (& V) [ £2(V) listFiles returns the list of available files, arstoreFileadds a

m in Mtd | await g | await g A t?(Vv) | await p(E; V)

file to the database, possibly overwriting an existing file.

Fig. 1. An outline of the language syntax for method definitions, with The cIas_sServerCI_takes object paramet_ers of interfaces
typical terms for each category. Capitalized terms such a@snote lists, sets, DB and Client and implements theServer interface. The

or multisets of the given syntactic categories, depending on the context. pgrameters provide static links to the local database and
client. The latter decides which remote servers may be trusted
for downloading files.

while constructs, and assignment to local and object variableaassServerCl(myC"ent Client2 myDB:DB) implements Server
is expressed ag := E for a disjoint list of program variables  pegin with Server

and an expression lig, of matching types. While expressions op getLengthin fld:Str out Ith:Nat) ==
are without side effectsnew creates a new object in the  await myDB.getLength(fid;lth) . _
environment and returns its object identifier. In-parameters asOP 9etPackip fld:Str, pNbriNat out packList[Data]) ==

. _ : var f:List[Data]; await myDB.getFile(fld;f); pack:=f[pNbr] .
well as this, labe| and caller are read-only variables. op listFilesiout serversiList[Str], files: List[Str]) ==

With inner release points, the object need not block while await myClient.getServers(; servers);
waiting for replies. This approach is more flexible than future ~ await myDB.listFiles(; files) .
variables: suspended processes or new method calls may Bad
evaluated while waiting. If the called object never replies, The methodgetLengthreturns the number of packs for a
deadlock is avoided as other activity in the object is possiblgiven file, getPacka particular pack in the transmission of a
However, when the reply arrives, theontinuation of the file, andlistFilesthe lists of known servers and available files,
process must compete with other enabled suspended procedfedet s[i] be thei’th element of lists (for 0 < i < lengths)).
For code inside a subclass 6f,we introduce the syntax Note thatServerClobjects can haveeveral interleaved activ-

tim@C(In) for asynchronous andn@C(In; Out for syn- ities: several downloads may be processed simultaneously as
chronouslocal invocation of a method abové in the in- Well as uploads to other servers, etc. All method calls are
heritance graph. As the binding of such calls may be doAgynchronous: If a server temporarily becomes unavailable,
without knowing the class ahis object, they are callestaticc  the transaction is suspended and may resume at any time after
in contrast to calls withou®, called virtual. As objects are the server becomes available again. Processor release points
typed by interfaces, external calls are always virtual. Fig. @hsure that the processor will not be blocked in this case and
summarizes the language syntax. transactions with other servers are not affected.
The classClientCl takes an object parameter of interface
Serverand implements th&€lient interface:

IV. EXAMPLES class ClientCl (myServerServe) implements Client, Client2
begin var trusted:List[Str] := myServer
. with Server
A. Peer-to-peer Networking op getServersqut sList: List[Str]) == sList := trusted .
with Any

In a distributed peer-to-peer file sharing system, serversop availFiles put filesiList[Strx Str]) == await aux(0; files) .
may arrive and disappear dynamically. A client requests a©P aux (n i:Nat out filesList[Strx Str]) == _
file from a server in the distributed network, and downloads Vf?lreél_'_tzjl‘i?b(?'_'fllé'r?t%ﬁ('E;zts[tzt(;])’);'é'ﬁtiki"'seﬂ[ss;rXStr]'
it as a series of packet downloads until the file download 't frustedq] listFiles(); t2!this . AUX(i+1):
is complete. The connection to the server may be blocked, (await t1?(sList, fList1); trusted := trusted (sLigtusted);
in which case the download will automatically resume if files := files; pair(trusted]i],fList1))
the connection is reestablished. A client may run several | (await 22(fList2); files := files fList2 fi .
downloads concurrently, at different speeds. We assume thapsarf(fqire”e(gcsl!qLiSsttr[’gﬁjtﬁth:-:Nat }
every node in the network has an associated database with await’s?d.gétLength(fld; ithy:
shared files. Downloaded files are stored in this database, while (Ith>0) do await sld.getPack(fld, Ith; pack);

which is not modeled here but implements an interfBdé file:=(file; pack);lth:=Ith - 1Lod; !myDB.storeFile(fld file) .
end



; i : class Buf2(Ith: Nat) inherits Bufl(lth), Lock
We denote by the empty list and by ‘;’ list concatenation. begin with Any

Fort:T ands, s': List[T], let s\ s’ be the list of elements in o5 byt (n x: Data) == unlock@ock & put@BufL(x) .

list s which do not occur in lists’ and pair(t, s) the list of op get out x: Data) == lock@ ock & get@Bufl1(;x) .

pairs obtained by a pairwise mapping#bnto s. op ggetput x: Data) == sync@ock & get@Buf1(;x) .

The methodavailFilesuses an auxiliary methogux returns a  €nd

list of pairs where each pair contains a file identiffef and We have obtained a history sensitive version of the buffer class

the server identifies/d wherefld may be found, andegFile by combining the two superclasses in a clean manner. The

returns the file associated witfid. Note that the auxiliary resultingggetis guarded by (—locked A size > 0), ensuring

function isprivate as it is not declared in th€lient interface. that both guards are satisfied before the operation may start.
Nodes in the peer-to-peer network which implement thghis is in general crucial to avoid deadlock, for instance if

Peerinterface can be modeled by the cldgsde below. the sync operation grabs the lock @getwould then block a

succeedingyge):
class Node (db:DB) inherits ServerCthis, db), ClientClI(this) wgel

implements Peer op sync ==await not locked; locked :=true.

begin end This reuse of inherited operations by synchronous merge

Due to the instantiation of the superclass parameters withd synchronous calls to superclass methods is semantically
this, several of the asynchronous calls considered above haWean, e.g. partial correctness reasoning abpands, carries
now become local calls to the objects itself. Using inner releasger to s; & s, when any common program variables are not
points, this does not cause any difficulties; asynchronous callsanged in neither statement. As Creol gives read only access
may be evaluated whenever the object is idle. to in-parameters anthis, the requirement is guaranteed for
synchronized merge of super operations from disjoint super-
classesim;@QC (. ..) &mo@Cy(. . .), as in the above example.

We now demonstrate the use of Creol on examples frafynsequently, synchronized merge guarantees maintenance of
the literature on the inheritance anomaly [19], in particulzgruperdaSS invariants when used in this way [25].
anomalies related to the use of guards. Note that inheritanceryg example shows how business code and synchronization
anomalies also occur in languages with single inheritanggde can be developed independently in Creol, and the two
Interfaces are omitted here, as they are not central to t8ds of code can be combined effectively and cleanly. In
discussion. LetBuf be a class with parametéengthNat, contrast to recent aspect oriented approaches [20], including
unguarded operationsut(x: Data) and get(out x: Data), and  gynchronization patterns and composition filters, we use the

an internal attributesize recording the current number ofsame pasic language to express both kinds of code.
elements in the buffer. By means of tldeconstruct, we may

easily add guards to make users wait when the operations V. AN OPERATIONAL SEMANTICS FORCREOL
cannot be performed properly:

B. Inheriting synchronization constraints

The operational semantics of Creol is defined using rewrit-
class Bufi(length: Nat)inherits Buf(length) ing logic [4]. A rewrite theory is a 4-tupl® = (X, F, L, R),
begin with Any o where the signatur& defines the function symbols of the
op put (n x: Data) ==await size < length; put@uf(x) . language,E defines equations between terms,is a set
op get (out x: Data) ==await size > 0; get@uf(;x) . . .
op get2 put x1, x2: Data) ==await size > 1: of labels, andR is a set of labeled rewrite rules. From
get@Buf(;x1); get@Buf(;x2) . a computational viewpoint, a rewrite rule— t’ may be
end interpreted as docal transition rule allowing an instance
Here, we have addedget2operation where the guard ensure§f the patternt to evolve into the corresponding instance
that two Synchronouget calls can be performed proper|y_ of the patternt'. Each rewrite rule describes how a pal’t of
We then consider the prob|ems d'ﬁistory sensitive @ Configuration can evolve in one transition Step. If rewrite
behavior adding an operatiomget that should behave like fules may be applied to non-overlapping subconfigurations,
get expect that it must wait after a normgét We first define the transitions may be performed in parallel. Consequently,

a mix-in classLock, with general synchronization operations€oncurrency is implicit in rewriting logic (RL). A number of
concurrency models have been successfully represented in RL

class Lock _ [4], [5], including Petri nets, CCS, Actors, and Unity, as well
begin var locked: Bool4alse . as the ODP computational model [26]. RL also offers its own

ith An . . .
W(I)p unI())/ck == locked :=false . model of object orientation [5].

op lock == locked :=true . Informally, a state configuration is a multiset of terms of
op sync ==await (- locked) . given types. Types are specified in (membership) equational
end logic (¥, E), the functional sublanguage of RL which supports

We may now use multiple inheritance to add a lock talgebraic specification in the OBJ [27] style. When modeling

the buffer class, and redefine the buffer operations, addiogmputational systems, configurations may include the local

synchronization by means sf/nchronous merge system states. Different parts of the system are modeled by
terms of the different types defined in the equational logic.



RL extends algebraic specification techniques with transhange, there is no way to access all classes in a configuration
ition rules: The dynamic behavior of a system is captured a single equation or rule. A natural solution is to useirsd
by rewrite rules, supplementing the equations which defineessage to be sent from a class to its superclasses, resulting in
the term language. Assuming that all terms can be redu@t#iound message sent back to the object generatingbihd
to normal form, rewrite rules transform terms modulo thmessage. To simplify the presentation we do not discuss the
defining equations of.. Conditional rewrite rules are allowed,influence of parameter types on the binding mechanism.
where the condition is formulated as a conjunction of rewrites In RL's object model [5], classes are not represented expli-
and equations which must hold for the main rule to apply: citly in the system configuration. This leads to ad hoc mech-
anisms to handle object creation, which we avoid by explicit
class representation. The commaraivC'(argg creates a new
Rules in RL may be formulated at a high level of abstractioopject with a unique object identifier, object variables as listed
closely resembling a compositional operational semantics. imthe class parameter list andAit, and places the code from
fact, structural operational semantics can be uniformly mapptx run method inPr.
into RL specifications [28]. 2) Concurrent Transitions:Concurrent change is achieved
1) System ConfigurationsAn asynchronous method callin the operational semantics by applying concurrent rewrite
will be reflected by a pair of messages, and object activity witeps to state configurations. There are four different kinds of
be organized around message queughich contains incom- rewrite rules:
ing messages andm@ocess queuwhich contains suspended « Rules that execute code from the active procEesevery
processes, i.e. remaining parts of method instances. In order program statement there is at least one rule. For example,
to increase parallelism in the model, message queues will be the assignment rule for the program:= E binds the
external to object bodies. A state configuration is a multiset values of the expression ligt to the listv of local and
combining Creol objects, classes, messages, and queues. As object variables.
usual in RL, the associative constructor for lists, as well as. Rules for suspension of the active proce®¥¢hen an
the associative and commutative constructor for multisets, are active process guard evaluatesfatse, the process and

subconfiguration— subconfiguratiorif condition

represented by whitespace. its local variables are suspended, leaviigempty.

In RL, objects are commonly represented by terms of e« Rules that activate suspended processésien Pr is
the type (O : C la; : v1,...,a, : v,) Where O is the empty, suspended processes may be activated. When this
object’s identifier,C' is its class, theu;'s are the names of happens, the local state is replaced.

the object’s attributes, and the,'s are the corresponding « Transport rules: These rules move messages into and
values [5]. We adopt this form of presentation and define out of the external message queue. Because the external
Creol objects, classes, and external message queues as RLmessage queue is represented as a separate RL object,
objects. Omitting RL types, a Creol object is represented by it can belong to another subconfiguration than the object
an RL object(Ob| CI, Pr, PrQ Lvar, Att, Lab), where Ob is itself and it can therefore receive messages in parallel
the object identifierCl the class nameRr the active process with other activity in the object.
code,PrQa multiset of suspended processes with unspecifig¢hen auxiliary functions are needed in the semantics, these
queue ordering, andvar and Att the local and object state,are defined in equational logic, and are evaluated in between
respectively. Let be a type partially ordered by, with least the state transitions [4]. The rules for the basic constructs
elementl, and letNext: 7 — 7 be such thatz .2 < Next{z). concerning method calls, replies, guarded commands, local
Lab is used to generate method call identifiers and valusgnchronous method calls, and creation of new objects, are
of type 7. Thus, the object identifie©Ob and the generated now considered in more detail.
local label value provide a globally unique identifier for each 3) Method Calls: In the operational semantics, objects
method call. Message queues are RL objé@s| Ev), where communicate by sending messages. Two messages are used
Qu is the queue identifier anflv a multiset of unprocessedto encode a method call. If an objeetf calls a methodn
messages. Each message queue is a distinct term in the sihitan objecto., with argumentsin, and the execution of
configuration, associated with one specific Creol object.  m(In) results in the return valueBut, the call is reflected by
The classes of Creol are represented by RL objedtso messagenvodos, m, (n o1 In)) and comfn, o1, Oub),
(Cl| Inh, Att, Mtds, Tok, where Cl is the class namenh is which represent the invocation and completion of the call,
the inheritance listAtt a list of attributes,Mtds a multiset respectively. In the asynchronous setting, invocation messages
of methods, andlok is an arbitrary term of sort. When an must include the caller’'s identity, so completions can be
object needs a method, it is bound to a definition in Miels transmitted to the correct destination. Objects may have several
multiset of its class or of a superclass. pending calls to another object, so the completion message
To pave the way for dynamic reconfiguration mechanismisicludes a locally unique label valug generated by the caller.
such as a dynamic class construct [29], the inheritance graptWhen an object calls an external method, a message is
will not be statically given. We then need a binding mechanispiaced in the configuration. The rewrite rule for this transition
which dynamically inspects the current class hierarchy aan be expressed as follows, ignoring irrelevant attributes in
present in the configuration. As rewriting logic targets locdhe style of Full Maude [5]:



(O:0b| Pr: (t'lz.m(In);s), Lvar: L, Att : A, Lab: n) code and local state. Values of the actual in-paramétethe

— caller O’, and the label value are stored as local (read-only)
(O:0b| Pr: (t :=n;s),Lvar: L, Att: A, Lab: Next(n)) variables.
invoc(evalz, (A; L)), m, (n O evalin, (A;L)))) The process resulting from binding a synchronous call is

wherez is an object expression, arttal is a function which l0aded as active code, defined by the following equation:

evaluates an expression (list) in the context of a state. In thgundo, (s, ((label— n) (caller— O) L)))

case of an asynchronous call without an explicit labethe (0:0b| Pr: (n?(v));s, PrQ: W, Lvar: L) =

assignment ta is omitted. (O:0b| Pr: '; contn), PrQ: ((n?(Vv));s,L) W, Lvar: L")
Similarly, a local asynchronous static callQC’(In) gives

. ) X The additional commandontn) ensures that only the process
rise to the invocation message

which made the call may continue after method completion,
invo O, m@C”, (n O evalln, (A;L)))) thereby causing a LIFO discipline @?rQ for local synchron-

and the virtual local callt!m(in) is handled as!m@cC(in) ous calls. For an asynchronous call the resulting pro¢ess
whereC is the class 0O. A synchronous call, remote or local,loaded into the internal process queue, defined by the equation
virtual or static, is handled by means of an asynchronous Ca”bouan,R) (0:0b| PrQ: W) = (O:0b| PrQ: R W)

and a reply command:
Py Here, the last equation only applies if the first equation did

(0:0b| Pr: p(Im; Oub; s, Lab : n) not give a match. Note that the use of equations enables the
= (0:0b| Pr:1p(In);n?(0Uf; s, Lab:m) binding mechanism to execute in zero rewrite steps!
which results in aninvoc message as defined above. . 5) Guarded CommandsThere are three types of guards
Transport rules take charge of the message, which evegaresenting potential processor release points: boolean ex-
tually arrives at the callee’'s external message queue. Af}ﬁ%ssions, wait guards, and return guards. Only evaluation
method execution, a completion message is emitted and eVgfias for active process return guards are presented here.
tually arrives at the cgller’s external message queue. Return guards allow process suspension when waiting for
. The _caller may wait for a completlon in a reply commang, 04 completions, so the object may attend to other tasks
(including synchronous calls) or in a guard. The reply COManile waiting. A return guard evaluates troe if the external
mand blocks until the appropriate reply message has arrivrﬁ ssage queue contains the completion of the method call,
in the external message queue. and execution of the process continues. If the message is not
(O:0b| Pr:(t?(v);s), Lvar: L)(O:Qu| Ev: Q comfdn,O,0ub) in the queue, the active process is suspended. The object can
— then compute other enabled processes while it waits for the
(O:0b| Pr: (v:=0uts),Lvar: L) (O:Qu| Ev: Q) completion of the method call.
ifn = evalt,L) (0:0b| Pr: (awaitg?;s), Lvar: L) (O:Qu| Ev: Q)
A reply guardt? evaluates to true when theomp message  __,
has arrived, otherwise the active process is put on the intergahqueugevalg, L), Q) then (O:Ob| Pr: s, Lvar: L) else
process queue (see below). (O:0b| Pr: e, PrQ: (W ((awaitg?;s),1)), Lvar: &) fi
4) Virtual and static binding of method callswhen the .oy ev: @)
invocation of a methodn is found in the external message . .
queue of an objead of classC, a messagéind O, m, In, C) where the functionnqueuechecks whether the completion

is generated wheré is the actual in-parameter list. \ﬁrtualWlth the given label yalug Is in the message quele
calls are handled by the following equation: When no process is active, the return guard of the suspended

. . ) P process may be retested against the external message queue. If
(O.(?g| C(;lb.| ?l <g>(§g| '(‘:?V'fé ’n‘gf(g’;z’om)) n.C) the completion message is present, the process is reactivated.
= (0: : :Qu| Ev: ind(O, m, In,

. . . it 47 / .
Static method calls are generated without inspectingtteal (0:0b| Pr: e, PrQ: (awaitg?;s,L') W, Lvar: )

class of the callee, thus surpassing local definitions: (Ogﬂ Ev:Q)
invoO, mac”, In) = bind O, m, In,C"). (O:0b| Pr:s,PrQ: W,Lvar: L") (O:Qu| Ev: Q)

If m is defined locally inC', a process with the method codef inqueu¢evalg,L), Q)

and local state is returned intundmessage. Otherwise, thegheryise, another suspended process from the process queue
bind message is retransmitted to the superclasseS 0f & promay be loaded intdr. Remark that any occurrence of a
left-first, depth-first order. wait in a guard causing process suspension is removed.

bind(O, m, In, nil) = bound O, nong 6) Object Creation:A new object with a unique identifier
bindO, m, In, (C' S"))(C : Cl|Inh: S, Mtds: m) and an associated event queue are created, after which a
=if (m in m) then boundO, ge{m, ™, In)) else synchronous call is made toin (if present in the class). New
bind(O, m, In, (S §")) fi (C:Cl| Inh: S, Mtds: m) object identifiers are created by concatenating tokefiom

The auxiliary functionget fetches methodn in the method the unbounded selok to the class name. The identifier is
multisetm of the class, and returns a process with the method&turned to the object which initiated the object creation.



(O:0b| Pr:v:=newC(In);s,Lvar: L, Att : A) VI. RELATED WORK

(C:Cl| Att: A, Tok: n) Many object-oriented languages offer constructs for con-
- currency. A common approach has been to rely on the tight
(O:0b| Pr:v:= newids, Lvar: L, Att : A) synchronization of RPC and keep activity (threads) and objects
(newid: Ob| CI: C, Pr: run, PrQ: e, Lvar: e, Att : ¢, Lab: 1) distinct, as done in Hybrid [6] and Java [7], or on the rendez-
(newid:-Qu| Ev: ) (C:Cl| Att: A’, Tok: Next(n)) Vvous concept in concurrent objects languages such as Ada [2]
find(newid C(eval(In, (A, 1))), (this — newid)) and POOL-T [32]. For distributed systems, with potential

Here, newid denotes the new identifier. Class parameters agelays and even loss of communication, these approaches
stored among object attributes. fikad message, which takesseem less desirable. Hybrid offedelegationto (temporar-

an object identifier, a class inheritance list, and a substitutidy) branch an activity thread. Asynchronous method calls
as arguments, causes the inheritance tree to be traversed ¢ara be implemented in e.g. Java by explicitly creating new
left-first depth-first order, in order to dynamically accumulatéhreads to handle calls [33]. UML offers asynchronous event
and initiate all inherited attributes, while passing on appraommunication and synchronous method invocation but does
priate class parameters as stated in the inheritance list. Tiod integrate these, resulting in significantly more complex
completed traversal results in a messagend with the object formalizations [34] than ours. To facilitate the programmer’s
identifier and a substitution (i.e. a local state) as argumentsask and reduce the risk of errors, implicit control structures

find(O, nil, A) = found O, A) based on asynchronous method calls seem more attractive,
find(O, ((C(In)) s'),A) (C:Cl| Inh: s, Att : 1A) allowing a higher level of abstraction in the language.
= find(O, (sS), (A initevaliA, In,A))) (C:Cl|Inh: s, Att : 1A) Languages based on the Actor model [11], [12] take asyn-

We here denote bya a state where variables are bound tghronous messages as the communication primitive for loosely
expressions and not only data values. The auxiliary functiGRUPled processes. This makes Actor languages conceptually
initeval uses a state to evaluate (sequentially from left to attractive for distributed programming. Representmg method

right) attributes initialized by expressions iim while passing calls by asynchronous messages has lead to the notion of future

the parameterdn. The resulting state is consumed by th¥ariables found in e.g. ABCL [21], Eiffgl [23], CJava [33],
object requestindind by the equation and in the Join-calculus [35] based languages Polyphohic C

24] and JoinJava [22]. Our proposed asynchronous method
found 0, ) (O: Ob| Alt : &) = (O: Ob| Alt: A) E:all]s resemble futu[re ]variablzs,pand inner processor release
Notice again that the use of equations enables a new objecbg?ms further extend this approach to asynchrony.
be created and initialized in a single rewriting step. Most languages supporting asynchronous methods either
7) Testing Specifications in the Creol Interpret@pecific- gjsallow inheritance [21], [22] or impose redefinition of
ations in RL are executable on the Maude modeling ap@ynchronous methods [23]. In Polyphonit iBheritance is
analysis tool [5]. This makes RL well-suited for experimentingxpressed as a disjunction of join patterns [35], resulting in
with programming constructs and language prototypes, Cogsndeterminism rather than overloading, and supplemented by
bined with Maude’s rewrite strategies and search and modglsypstitution mechanism for inherited code. CJava [33], re-
checking abilities. Development and testing of language Cogyricted to outer guards and single inheritance, allows separate
structs can be done incrementally. The operational semantiggefinition of synchronization code and bodies in subclasses.
described in this paper has been used as a language interpretgfaude’s inherent object concept [4], [5] represents an
to analyze Creol models [30]. The interpreter consists of 7Q)Q>ject’s state as a subconfiguration, as we have done in this
lines of code, including auxiliary functions and equationeﬁaper, but in contrast to our approach object behavior is cap-
specifications, and it has 25 rewrite rules. tured directly by rewrite rules. Both Actor-style asynchronous
Although the proposed operational semantics is highly nogressages and synchronous transitions (rewrite rules which
deterministic, Maude rewriting is deterministic in its choiCenyolve more than one object) are allowed, which makes
of which rule to apply to a given configuration. For th aude’s object model very flexible. However, asynchronous
evaluation of specifications of non-deterministic systems [jethod calls and processor release points as proposed in this
Maude, as targeted by Creol, this limitation restricts the direghper are hard to represent within this model. Inheritance is by

applicability of the tool as every run of the specification wilyjsjoint union of methods, also resulting in nondeterminism.
be identical. However, RL is reflective [31], which allows

execution strategies for Maude programs to be written in RL. VII. CONCLUSION

A strategy based on a pseudo-random number generator i$he idea of the paper is to show how the concepts of

proposed in [30]. Using this strategy, it is easy to test asynchronous method calls and multiple inheritance can be
specification in a series of different runs by providing differenhtegrated in the setting of distributed concurrent objects in

seeds to the random number generator. By executing #nesmooth manner, including asynchronous local calls. The

operational semantics, Maude may be used as a model analgpisroach allows active and passive behavior to be easily
tool. Maude’s search and model checking facilities can lm®mbined in concurrent objects. Previous approaches have not
employed to look for specific configurations or configurationsombined asynchronous communication with inheritance in a

satisfying given conditions. satisfactory manner. This idea is materialized through a small
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